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Abstract

This paper describes results from efforts to develop VOC sensing systems based on two
complementary techniques.  The first technique used a gated channeltron detector for resonant
laser-induced multiphoton photoionization detection of trace organic vapors in a supersonic
molecular beam.  The channeltron was gated using a relatively simple circuit to generate a
negative gate pulse with a width of 400 ns (FWHM), a 50 ns turn-on (rise) time, a 1.5 µs turn-off
(decay) time, a pulse amplitude of -1000 Volts, and a DC offset adjustable from zero to -1500
Volts.  The gated channeltron allows rejection of spurious responses to UV laser light scattered
directly into the channeltron and time-delayed ionization signals induced by photoionization of
residual gas in the vacuum chamber.  Detection limits in the part-per-trillion range have been
demonstrated with the gated detector.

The second technique used arrays of surface acoustic wave (SAW) devices coated with
various chemically selective materials (e.g., polymers, self assembled monolayers) to provide
unique response patterns to various chemical analytes.  This work focused on polymers, formed
by spin casting from solution or by plasma polymerization, as well as on self assembled
monolayers.  Response from coated SAWs to various concentrations of water, volatile organics,
and organophosphonates (chemical warfare agent simulants) were used to provide calibration
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data.  A novel visual empirical region of influence (VERI) pattern recognition technique was used
to evaluate the ability to use these response patterns to correctly identify chemical species.  This
investigation shows how the VERI technique can be used to determine the best set of coatings for
an array, to predict the performance of the array even if sensor responses change due to aging of
the coating materials, and to identify unknown analytes based on previous calibration data.
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Automated Detection and Reporting of Volatile
Organic Compounds (VOCs) in Complex

Environments

Introduction

The work discussed in this report addresses technological issues associated with the
development of sensors for automated VOC (Volatile Organic Compound) monitoring and
reporting.  Our approach was to develop two types of sensors for VOC monitoring: (i) sensors
based on the absorption of ultraviolet (UV) laser radiation and the subsequent detection of the
fluorescence or photoionization signal and (ii) sensors based on surface acoustic wave (SAW)
detection of VOCs.  Intelligent algorithms that can both deconvolve complex chemical mixtures
and, in addition, guide the development of an integrated sensor were also investigated in this
work.  Our goals were to (i) improve the ability of UV and SAW sensors to detect VOCs in
complex environments, (ii) optimize the choice of chemically sensitive films for arrays of SAW
devices, (iii) apply pattern recognition techniques to achieve chemical selectivity from a small
number of nonselective films, and (iv) develop techniques to integrate multiple sensors in a robust,
intelligent manner for fully automated VOC monitoring.

The work in this report has shown that by cooling VOCs in a pulsed molecular beam
expansion, UV detection sensitivities in the ppb (part per billion) to low ppt (part per trillion)
range can be achieved.  Achieving these low sensitivities depended critically on the development
of a gated channeltron detector to detect the photoionization signal resulting from the absorption
of UV laser radiation.  The work also led to the development of SAW coatings optimized for the
detection of 28 representative compounds.  SAW detection limits depend on the volatility of each
particular compound, but generally range from 100 ppb for certain organophosphonates to ~100
ppm (part per million) for some highly volatile solvents.  Included in the sets of coatings are those
for water and CO2, two common interferents in sensing scenarios.  The two sensor approaches
investigated in our work generally compliment each other in their sensitivity to specific VOCs.

VERI (Visual Empirical Region of Influence) algorithms were developed and optimized to
analyze signals from SAW devices.  Key features of the algorithms are the ability to handle
nonlinear responses similar to those encountered in SAW devices and the ability to automatically
recognize the existence of unknown signals, all with no adjustments or threshold variations.  The
algorithms run in near real time (seconds) on low-level platforms (486 PC or equivalent) and are
suitable for field applications.  Application of the algorithms to the analysis of UV data is not
expected to require major new algorithm developments.
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Pulsed Molecular Beam Expansion

Background

Circuits which can be used to rapidly gate the high-voltage bias for detectors used in
photoionization experiments are becoming increasingly useful.1,2  In particular, circuits have been
developed for use with microchannel plate (MCP) detectors.3  For the work discussed in this
report, a gating circuit was developed for a channeltron detector used in experiments to detect
resonant laser-induced multiphoton photoionization signals from organic vapors in a supersonic
molecular beam expansion.  Measurements were carried out to detect very low concentrations
(ppb) of organic vapors in helium.  At the lowest vapor concentrations, spurious ionization signals
interfered with the detection of photoionization signals from the organic vapors.  It was found
that a gated channeltron detector can be used to reduce the contribution of spurious ionization
signals to the channeltron output, thereby reducing VOC detection limits.  The spurious signals
are believed to originate from scattered laser light (below about 300 nm) and from time-delayed
ionization of residual organic vapors in the vacuum chamber.

Gating Circuit

Figure 1 shows the gating circuit which was developed to gate the channeltron bias
voltage.  The circuit is based upon refinements to a previous circuit developed by Gostein and
Sitz for use with MCP’s.4  In the present circuit a TTL-compatible Siliconix D469 Quad High
Current power driver chip is used to gate the high-voltage MOSFET BUK456-1000B.  In the
laboratory, the TTL-pulse output from a Stanford Research Systems DG535 digital delay
generator is used to trigger one channel of the quad power driver.

Figure 2 shows the input TTL trigger pulse and the 1000 Volt gate pulse with a -1000
Volt DC offset.  The gate pulse was measured using a Tektronix high voltage probe with the
circuit connected to the channeltron detector.  Both signals were digitized on a Tektronix 2430A
digital oscilloscope and transferred to an AT-PC computer using National Instruments
LabView™ 3.0 software.  The input TTL trigger pulse has a 200 ns FWHM pulse width and a 1
ns rise and fall time. The output gate pulse shows a 50 ns turn-on time (as measured from the 10
to 90% voltage level) and a 1.5 µs turn-off time (90 to 10%).  After the circuit has completely
turned on, the output pulse maintains a constant level for 400 ns.  A constant bias level is
important since the gain of the channeltron can vary significantly if the bias voltage changes as
little as 100 volts.  The approach used here to gate the channeltron takes advantage of the steep
gain versus bias voltage curve of the channeltron.  Thus, it is not necessary to switch the full bias
voltage.  Instead, one supplies a DC offset pedestal (nominally 1000 to 1500 Volts) from which to
gate to the full voltage-on condition.
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Figure 1.  Schematic diagram of the channeltron gating circuit.
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Figure 2.  Digitized oscilloscope traces showing (a) the TTL trigger pulse and (b)
the channeltron gated bias pulse.
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Performance of the Gated Detector

Operation of the gated detector was evaluated in experiments to detect trace
concentrations of VOC vapors in helium.  In the experiments, the helium and VOC vapor mixture
was expanded into a vacuum chamber through a pulsed nozzle.  The cooled supersonic expansion
was probed by a 10 Hz Quanta-Ray Nd:YAG laser used to pump a pulsed dye laser (Lumonics
HD-500) which was frequency-doubled in a beta-barium-borate (BBO) crystal to generate tunable
UV laser light.  For detection of toluene, ultraviolet laser light at 266.827 nm (vacuum) resonantly
photoionizes (1+1) toluene using the S1 origin (Oo

o) transition.5  Toluene at concentrations in the
mid-ppb range in 1000 torr of helium (calibrated using a high-accuracy vapor mixing manifold)
was supersonically expanded through a General Valve pulsed nozzle with a 0.5 mm diameter
orifice.  The vacuum chamber was maintained at a pressure of 10-8 torr by a turbomolecular
pump.  The gas pulse was 200 ms long.  The average vacuum chamber pressure increased to 1 x
10-5 torr, as measured by an ionization gauge, when the pulsed nozzle was operated at a pulse
repetition rate of 10 Hz.  The channeltron used in this experiment was a Galileo Model 4831G
(1.10 x 108 gain at -2350 VDC).

In Figure 3 two traces are shown.  These traces show the effect of changing the delay of
the channeltron gate pulse relative to the laser-induced photoionization signal from the gas pulse.
On the horizontal time axis in the figure, t=0 denotes the time at which the pulsed valve has fully
turned on and the laser is fired.  The time delay between the triggering of the gas pulse and the
laser firing is held constant.  The upper trace shows the signal output from the channeltron when
the gas pulse is present and the concentration of toluene was 53 ppb.  The bottom trace shows the
same measurement when there is no gas pulse present.  From the traces one can see the
contributions from directly scattered laser light as well as from time-delayed ionization signals
which are probably due to ions formed from photoionization of residual gas molecules in the
vacuum chamber and molecules photodetached from the surfaces of the vacuum chamber.  By
adjusting the channeltron gate to correspond to the position of the main signal from the gas pulse,
signal contributions, which would otherwise be integrated into the total photoionization current
response, are rejected.

Figure 4 shows a typical spectral wavelength scan across the toluene resonant origin band
using the gated channeltron detector.  This data was also obtained at a concentration of 53 ppb
toluene in helium.  The separation between the vertical lines represents the linewidth of the laser
as measured by a Burleigh pulsed wavemeter.  The drop in signal on the right-hand side of the
trace shows the signal baseline after turning off the pulsed jet.  The signal was measured with a
Stanford Research Systems Model 250 Boxcar Integrator operated in the last sample output
mode.  The last sample output signal from the integrator was digitized and input to a computer.
For each data point, signals from 10 laser pulses were accumulated and then averaged.  The
relative response to changes in vapor concentration was determined to be linear over 3 orders of
magnitude.
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Figure 3.  Dependence of the photoionization signal on the delay of the
channeltron gate pulse relative to the laser-induced photoionization event in the
gas pulse. The laser is triggered at t=0. The top trace (a) is the signal from 53 ppb
of toluene in helium, the bottom trace (b) is the baseline signal with no gas pulse
present.
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Toluene Detection Limit

A signal to noise ratio (SNR) determination was made by conducting an “off-on-off”
experiment.  For this measurement, the laser wavelength was set to the maximum resonant
photoionization transition and the signal was measured both with and without the gas pulse
present.  The SNR is defined as the average value of the signal from the gas pulse divided by the
standard deviation of the noise in the baseline with the gas pulse off.  A comparison showing the
benefits of gating the channeltron is shown in Figure 5.  The bottom trace is the signal without
gating (constant -1500 VDC bias) and the top trace shows the effect of gating the detector (gate
pulse is 400 ns wide and -500 Volts amplitude with a 1000 Volt DC offset bias).  The
concentration in the jet is 1000 ppb.  The data presented here is single shot data with no
averaging.  Signal to noise ratios calculated using this data are shown associated with each trace.
The SNR improves by an order of magnitude using the gated channeltron.
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Figure 5.  Data from 1000 ppb toluene in helium used for signal-to-noise (SNR)
measurements (a) with and (b) without the channeltron gating circuitry. Data
points are not averaged.
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Figure 6 shows data obtained for determining the toluene detection limit.  The toluene
concentration is again 53 ppb in helium and each data point is an average of 100 shots.  The slight
overshoot in signal when the gas pulse is turned on is thought to be due to release of toluene
accumulated on the interior of the pulsed valve assembly when the valve is off.  In this case a SNR
of 1500 is achieved which implies a detection limit (SNR=1) of 0.035 ppb.  This can be compared
to the detection limit of 0.05 ppb measured by T.A. Cool’s research group in their resonance-
enhanced multiphoton time-of-flight mass spectrometry apparatus.6  Similar low detection limits
have been obtained for other organic compounds with the gated channeltron detector.
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Figure 6.  Data from 1000 ppb toluene in helium used to determine the toluene
detection limit. Each data point is an average of 100 laser pulses. The baseline is
shown vertically expanded by a factor of 100.

Summary
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The above experimental results demonstrate the effectiveness of using a gated channeltron
for resonant multiphoton ionization detection of trace organic molecules in a pulsed molecular
beam apparatus.  By using a gated channeltron, improvements in signal to noise ratios of at least
one order of magnitude are easily obtainable.  Furthermore, as demonstrated, the gated
channeltron detector can be used for very low concentration detection of volatile organic
compounds.  The detection limits are as good as those obtained from other detection techniques
such as resonance-enhanced multiphoton time-of-flight mass spectrometry.  In addition, the use of
a channeltron with a relatively simple gating circuitry enables a much simpler and more compact
detection apparatus for the detection of VOCs.

Pattern Recognition

Background

There is much current interest in the use of pattern recognition (PR) techniques to identify
and quantify chemical analytes based on the multivariate responses of chemical microsensor
arrays7,8.  PR techniques used previously measured array responses of the class categories of
interest, called training set data, to infer the class category associated with new array
measurements (test data).  The class categories can be the chemical identities of the analytes and
can also represent the analyte concentrations.  Each sensor in the array provides one dimension of
the multidimensional data vectors.  The application of PR techniques to microsensor-based
chemical sensing is motivated by two advantages: (i) chemical identification is possible using only
partially chemically selective microsensors rather than highly selective (and more difficult to
develop) microsensors; (ii) PR can in principle identify a large number of chemical species using a
small, fixed set of sensors.

The desired arrays of sensors are those that yield distinctive response patterns for different
chemicals, i.e., so that the clusters of pattern vectors associated with different chemical classes are
spatially separated and distinguishable in the pattern vector space.  However, not all arrays yield
useful separations of the chemical classes, so much of the work required to develop a useful
chemical pattern recognition scheme is in finding a useful combination of chemical sensors.

SAW devices that have been coated with different partially selective films are of current
interest for array applications.8-10  The variety of coatings that can be fabricated suggests the
possibility of detecting a wide range of analytes with SAW devices.  However, coated SAW
devices often respond nonlinearly and occasionally nonmonotonically as a function of analyte
concentration.11  These devices also do not necessarily yield additive responses to chemical
mixtures.  Such responses present severe difficulties for conventional chemometric techniques,
which work well for linear response signals.

We developed a new PR technique which can treat nonlinear and nonmonotonic sensor
responses.  The technique is computationally efficient, provides warning for new data points that
are atypical or that cannot be reliably identified, and requires no user-adjustable parameters.  The
usefulness of the technique was demonstrated by using it to optimize arrays of coated SAW
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devices for identifying individual VOCs, organophosphonates and water.  The usefulness of PR
techniques was further demonstrated by the ability to detect, using one of the best arrays found
from the optimization study, water, six VOCs (acetone, DIMP, i-octane, n-propanol, TCE,
toluene) and their 21 binary combinations over wide concentration ranges.  VOC detection and
monitoring is of interest for a number of industrial and DOE applications10 and
organophosphonate detection is important for early warning of chemical warfare agents9.

Pattern Recognition Technique

Our PR technique relies on a new empirical approach to k-dimensional cluster analysis that
incorporates measured human visual perceptions of difficult 2-dimensional clusters.12  We use this
new clustering method because it: (i) mimics human cluster perception; (ii) requires no prior
knowledge about the final cluster result (e.g., the number of clusters); (iii) outperforms
commercially available cluster methods on benchmarking tests.12  Here we describe the use of the
clustering results to carry out PR or to evaluate the expected PR performance using sets of coated
SAW sensor responses.  Details of the clustering method are described in Ref. 12.

PR is accomplished by computing clusterings of a new array (multivariate) measurement
with the set of training measurements.  These training measurements characterize the response of
the array to the chemicals of interest, and the different sets of VOC categories are referred to as
classes.  The chemical identities of the training points, which are found to cluster to the new
measurement, are used to assign a chemical identity as follows.  Three possible clustering cases
occur for the chemical class assignment of each new test point: (i) The new point is clustered only
with training data of a single class and is assigned that same class -- this is the desired result; (ii)
The new point is clustered with none of the training data and is not assigned a class -- these
outlier points can result from detection of a new chemical class that is not present in the training
data set, although sensor measurement errors can also produce outliers; (iii) The new point is
clustered with training points from multiple classes -- these points occur where the training set
classes overlap and cannot be reliably distinguished, so that the class assignment is ambiguous.
We note that cases (ii) and (iii) provide useful information that is often unavailable or unreliable
from existing PR techniques.

It is usually necessary to estimate the expected performance of the sensor array using only
the measured training data set.  We use the "leave-one-out" approach13, where each data point is
individually removed from the complete training set and examined as a new test point by the PR
technique.  This approach maximizes the use of the available training data and avoids the
favorable bias of the results that occurs by including the point that is being classified.  This
approach is not always convenient in some PR methods that require additional computations for
each version of the training set with a point removed (e.g., retraining a neural net).  The known
class identity of each training data point is compared with the result inferred from the clustering
approach.  There are again three possible cases which can arise: (i) The point is clustered only
with other training data of the correct class -- such points are correctly identified; (ii) The point is
clustered with none of the other training data -- these outlier points are too far away from other
points in the same class for clustering to occur.  Outlier points in the leave-one-out analysis are
usually due to inadequate sampling of the class in the parts of pattern vector space near the
outliers, and suggest the need for more training points.  However, these can also result from
sensor measurement errors; (iii) The point is clustered with other training points from one or more
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classes that do not match the correct class.  These points identify overlaps between classes in
pattern vector space where the sensor array is unable to reliably distinguish chemical identities.
Statistics on these three cases for the entire training set provide three separate figures of merit for
the sensor array under consideration, i.e. the percentage correctly identified, the percentage that
indicates inadequate training set sampling, and the percentage that indicates class overlap.  These
figures of merit are used here to optimize the selection of the array sensors.

Experimental Procedures for Developing Training and Test Data Sets

We analyze experimental results from three sets of coated-SAW arrays and analytes. In all
studies we make use of only the frequency shifts which result from the uptake of the analyte by
the SAW device coatings.  Other measurable responses, e.g. attenuation10, are also available for
PR, but these were not considered in this work.

Chemical Set 1:  The first set of chemicals includes water, an alcohol (isopropanol), a
ketone (acetone), unchlorinated hydrocarbons (d-limonene, n-hexane, and toluene) and
chlorinated hydrocarbons (CCl4, chloroform, and trichloroethylene or TCE).  These analytes were
sensed using SAW devices coated with ethyl cellulose (EC), polyisobutylene (PIB) and nafion
polymer films.  The data were acquired by alternating between a chemical-free purge stream and a
stream at a constant chemical concentration.  Chemical concentration was controlled by the
relative flow rates of a chemical-free mix-down stream and a saturated stream (obtained by
passage through a bubbler containing the chemical).  Four concentrations per chemical were
obtained.  This produced 12 data points for both the chlorinated and nonchlorinated classes.

Chemical Set 2:  The second set of chemicals includes water, an alcohol (isopropanol), a
ketone (acetone and methyl ethyl ketone or MEK), unchlorinated hydrocarbons (n-hexane, and
toluene) and chlorinated hydrocarbons (CCl4, chloroform, TCE, and perchloroethylene or PCE).
These analytes were sensed using SAW devices coated with 13 polymer films: EC, PIB,
poly(vinyl acetate) (PVA), poly(vinyl propionate) (PVP), a fluorinated polysiloxane (OV-215), a
cyanide modified polysiloxane (OV-275), polyethylene glycol adipate (PEGA),  poly(diphenoxy
phosphazene) (PDPP), poly(epichlorohydrine) (PECH), poly(ethylenimine) (PEI), a hydrophobic
fluoropolyol (FOX), poly(vinyl tetradecanal) (PVT), and a hydrogen bond acid modified
polysiloxane (HBAS).  The data were acquired as with Chemical Set 1.  Ten concentrations in a
linear progression from 5 to 50% of the saturation vapor pressure were obtained for each
chemical.

Chemical Set 3:  The third set of chemicals includes water, organophosphonates
(diisopropyl methyl phosphonate or DIMP, dimethyl methyl phosphonate or DMMP), a ketone
(acetone), aromatic hydrocarbons (benzene, toluene), chlorinated hydrocarbons (CCl4, TCE),
aliphatic hydrocarbons (cyclohexane, isooctane), and alcohols (methanol, pinacolyl alcohol, n-
propanol).  These analytes were sensed using SAW devices coated with nine self-assembled
monolayer (SAM) films and plasma-grafted polymer films (PGFs).  These films and the data
acquisition method are described in Ref. 14.  We retained 21 points per chemical, with
concentrations ranging from 9% to 49% of the saturation vapor pressure.

Chemical Set 4:  The last set consists of water, six VOCs (acetone, DIMP, iso-octane, n-
propanol, TCE, toluene) and their 21 binary combinations over wide concentration ranges.  This
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set was done to evaluate the best set of SAW coatings obtained from the optimization study using
the second set of individual VOCs.  In particular, this study demonstrates that SAW arrays chosen
for their ability to distinguish individual VOCs provide useful performance on binary mixtures as
well.  We also used this best 6-film array to investigate the ability of this approach to treat binary
mixtures as a function of SAW sensitivity aging.  The films were SH(CH2)15CH3,
SH(CH2)10COOH, SH(CH2)10COO-/Cu2+, plasma-grafted acrylic acid: 5 min. base + 30 min. graft,
polyisobutylene - plasma-grafted acrylic acid: 5 min. base + 15 min. graft, and Eugenol-30.
Binary VOC mixture data were acquired, starting from a high concentration/ low concentration
mixture, by increasing the concentration of the low component while decreasing the concentration
of the high component, ending when the opposite low/high mixture limit is reached.

Data Preprocessing for Clustering-Based Pattern Recognition

It is common for coated SAW devices to yield ranges of responses that are quite different
in magnitude.  In order for each device to have a comparable effect on the class separations in
pattern vector space, the magnitudes of the device responses must be comparable.  We equalize
the responses of each sensor by a multiplicative scale factor, so that the largest absolute training
data response of each sensor is unity.

The coated SAW sensor responses and the lengths of the multivariate pattern vectors
generally increase as the chemical concentrations are increased.  This tends to spread the class
vectors away from the origin and each other as the chemical concentrations are increased.  We
have normalized the pattern vectors to unit length after the device responses have been equalized
for the first two data sets.

Determination of Optimal Arrays

A key element in the successful development of a pattern recognition system is the
selection of a useful set of measurements that can separate the classes in pattern vector space.
This corresponds to selecting a set of SAW coatings and a set of chemical concentrations to
include in the training set.  One might expect that arrays with larger numbers of distinct sensor
signals, k, would always be preferable for PR applications.  This is not true for several reasons.
From a practical viewpoint, arrays with the fewest devices are likely to require simpler fabrication
and data acquisition procedures.  This motivates the use of the smallest arrays that provide the
desired performance.  From a PR performance viewpoint, discriminating ability reaches a
maximum and then declines as k is increased beyond approximately N/2, where N is the number
of training data points per class.  The reasons for this well-known behavior of PR systems are
discussed in Ref. 13.  Here we emphasize that the number of SAW films that can be usefully
included in an array is limited by the number of chemical concentrations per class that is included
in the training data set.  This well-known condition for reliable PR analysis of arbitrary k-
dimensional data is often not satisfied in published sensor PR work.  Lastly, we have determined
that using more SAW devices than the minimal necessary to distinguish the chemical of interest
can lead to more rapid degradation of  chemical recognition performance as the SAW devices age.
Including unnecessary devices in an array can decrease the effective multivariate signal to noise of
the system.
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For large sets of distinct devices, we must search for the smallest subsets that produce
good separation of the chemical classes of interest in a leave-one-out analysis.  We do this
explicitly for the nine SAMs and PGFs by examining all combinatorial sets of arrays.  The
computations are done on a SPARC 10 workstation.  The primary figure of merit we seek to
minimize is the percentage of incorrect leave-one-out points in the data set.  We also seek to
minimize the number of outliers among the array combinations with the smallest incorrect
percentages.  The number of data points per chemical class is sufficient to usefully include all of
the SAM-coated and PGF-coated SAW devices in the array, but we are interested in identifying
the smallest subset of devices with the best PR performance.
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Evaluation of the Expected Robustness of Array Performance

The SAW sensors have been observed to alter their sensitivities as a function of age, and
these changes can affect the ability of the PR system to distinguish the VOCs.  The PR method
can provide an estimate of this degradation if the quantitative effects of the sensor sensitivity
changes are added to a training data set.  We have performed this analysis for individual and
binary mixture VOC data sets.  Aging effects were simulated by artificially multiplying the
responses of each film by a constant less than one.  These artificial sensitivity reductions were
varied randomly between no shift (constant=1) and a limiting value.  The PR results directly show
how much aging can be tolerated before the individual and binary mixture VOCs recognition
becomes unreliable.

Results

Chemical Set 1:  The leave-one-out results for the ethyl cellulose, polyisobutylene and
nafion coatings yield no incorrect points for the class combinations chosen.  These results show
that a variety of chemical classes can be distinguished using these three SAW coatings.  The three
individual chemicals within the chlorinated and nonchlorinated VOC classes are not reliably
separated, so that additional measurements are needed to distinguish these chemicals.  However,
more concentration values are required for the individual chemical classes to achieve this
improvement.

Chemical Set 2:   With these films, it was found that very high correct classifications
(>95%) could be obtained for a large number of potential arrays.  In an investigation into the
effects of (modeled) aging, high performance was maintained with 20% added error, indicating
these arrays are fairly robust.  With the addition of 50% aging, significant degradation in
performance was observed with the best array giving only 73% correct classification.  With this
level of aging, it was clear that the best arrays were of intermediate size, with only 4-6 sensors.
The best four sensor array (EC, PIB, PEGA, and PVA) gave 72.3% correct.  For five sensor
arrays, adding OV-275 to this set gave 72.7% correct while adding PEI gave 72.9%.  For six
sensor arrays, adding both OV-275 and PEI gave the best result of 73.1%.  It is clear, however,
that the added complexity of going from four to six sensors would not be justified by these small
improvements if these large aging effects were expected.

Chemical Set 3:  The results of the array optimization showed that all three-film arrays
generate some incorrect chemical identifications.  The overall PR performance improves as films
are added and, for four or more films in the arrays, arrays exhibiting 100% correct responses were
found for all array sizes.  The best film combinations were found to be: three films --

HS(CH2)10COO-/Cu2+, Eugenol-30, PIB-PGAA 5+15, four films -- HS(CH)15CH3, PGAA-
PGAA 5+15, Eugenol-30, PIB-PGAA 1+15, five films -- HS(CH2)15CH3, HS(CH)15CH3,
PGAA-PGAA 5+15, PGAA-PGAA 5+30, PIB-PGAA 1+15, and six films -- HS(CH2)10COOH,

HS(CH2)10COO-/Cu2+, HS(CH)15CH3, Eugenol-30, PIB-PGAA 1+15, PIB-PGAA 5+15.

Chemical Set 4:  The results from this best 6-film array show that good chemical
differentiation of both individual and binary mixtures is achieved by applying PR to this set of six
coated SAW films.  Similar to the results for Chemical Set 2, the effects of (modeled) aging are



16

small for distinguishing of individual VOCs for SAW sensitivity losses of up to 30%;  Howver, for
distinguishing binary VOCs, identification accuracy becomes increasingly unreliable for SAW
sensitivity losses beyond about 10%.

Summary

We have developed a new pattern recognition (PR) technique for chemical identification
using arrays of microsensors.  The technique relies on a new empirical approach to k-dimensional
cluster analysis which incorporates measured human visual perceptions of difficult 2-dimensional
clusters.  The method can handle nonlinear SAW array data, detects both unexpected (outlier) and
unreliable array responses, and has no user-adjustable parameters.  We use this technique to guide
the development of arrays of thin-film-coated SAW devices that produce optimal PR performance
for distinguishing a variety of volatile organic compounds, organophosphonates and water.  The
technique also can be used to indicate the expected losses in chemical recognition performance as
the sensors exhibit age-induced changes in sensitivities.

Conclusion

We have shown that a pulsed molecular beam expansion combined with the use of a gated
channeltron detector provides a very sensitive means to detect VOCs.  Detection limits in the ppt
range were obtained for toluene.  Detection limits for other VOCs such as acetone, xylenes, and
trichloroethylene were in the ppt to ppb range.  Based on the work in this report, it should be
possible to develop field-portable VOC sensors with sensitivity in the high ppt to low ppb range.
The high spectral resolution associated with pulsed beam expansion measurements enhances the
identification of VOCs in complex chemical environments.  Further improvements in the
identification of VOCs are possible with the use of pattern recognition algorithms such as the
VERI algorithm developed to analyze signals from arrays of SAW devices.

We have also shown that good chemical differentiation can be achieved in arrays of SAW
devices by using pattern recognition algorithms to deconvolve signals generated by the individual
coated SAW films, if the choice of films is optimized.  Furthermore, we have shown that
performance in differentiating chemical species is maintained for modest drops in film sensitivities
that occur due to SAW film aging.  The choice of array size is important here as we have found
that the performance of larger than optimal arrays can degrade more rapidly with SAW film aging.
The results further emphasized the crucial role of PR analyses in designing practical array systems
for field operation.  Our work in this report conclusively demonstrates that pattern recognition
algorithms can be used to improve the performance of SAW devices in identifying VOCs and that
they play a crucial role in the design of SAW sensors that operate reliably under field conditions.
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